
Enabling Complex Queries to Drug Information Sources
through Functional Composition

Lee Peters1, Jonathan Mortensen2, Thang Nguyen1, Olivier Bodenreider1
1 National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA

2 Stanford Center for Biomedical Informatics Research, Stanford University, Stanford, California, USA 94305

Abstract

Objectives: To enable an end-user to create complex queries
to drug information sources through functional composition,
by creating sequences of functions from application program
interfaces (API) to drug terminologies. The development of a
functional composition model seeks to link functions from two
distinct APIs. Methods and Results: An ontology was devel-
oped using Protégé to model the functions of the RxNorm and
NDF-RT APIs by describing the semantics of their input and
output. A set of rules were developed to define the interoper-
able conditions for functional composition. The operational
definition of interoperability between function pairs is estab-
lished by executing the rules on the ontology. Conclusion: We
illustrate that the functional composition model supports
common use cases, including checking interactions for
RxNorm drugs and deploying allergy lists defined in reference
to drug properties in NDF-RT. This model supports the RxMix
application (http://mor.nlm.nih.gov/RxMix/), an application
we developed for enabling complex queries to the RxNorm
and NDF-RT APIs.

Keywords:

RxNorm, NDF-RT, application programming interface, web
service composition, complex queries

Introduction

Biomedical terminologies are important knowledge sources for
many aspects of biomedical research and healthcare [1, 2]. In
particular, standard terminologies, such as SNOMED CT,
LOINC and RxNorm, play a crucial role in health information
exchange and the certification of electronic health record
technology, commonly referred to as “meaningful use” [3, 4].
Access to biomedical terminologies is either direct, interactive
access by a user through a browser or access by a software
application through an application programming interface
(API).

Many browsers have been developed to access biomedical
terminologies. For example, there are over twenty browsers for
SNOMED CT [5]. Biomedical terminologies can also be
accessed through repositories, such as the National Library of
Medicine’s Unified Medical Language System (UMLS) [6]
and the National Center for Biomedical Ontology’s BioPortal
[7]. The UMLS and BioPortal both offer web-based browsers
through which users can find codes for a given biomedical
term, navigate hierarchical and other relations, and explore
mappings across terminologies.

In order to support access to biomedical terminologies by
software applications, application programming interfaces
(APIs) have been developed, often based on web services.
These APIs are a key component of health information
technologies, including “meaningful use”, as they mediate
access to standard terminologies through transport standards,
such as the Simple Object Access Protocol (SOAP) and
REpresentational State Transfer (REST) architecture.
Examples of APIs to biomedical terminologies include the
UMLS Terminology Services API (SOAP-based) [8], the
BioPortal API (RESTful) [9], and the APIs to drug
information sources developed for RxNav (SOAP-based and
RESTful) [10]. APIs to biomedical terminologies have been
developed independently of one another and are generally
poorly interoperable. Standardization of terminology services
by standard development organizations, such as the Object
Management Group (OMG) and Health Level 7 (HL7) is
underway through the specification of Common Terminology
Services 2.0 (CTS2) [11].

Terminology APIs generally offer a set of basic functions that
can be used and combined by a user to obtain relevant
terminological information. Typical functions include finding
the code associated with a string, accessing the properties of a
concept, getting the list of related concepts for a given
relationship and getting the list of codes in a given
terminology. API developers do not normally offer functions
for complex queries because they rarely know in advance all
the use cases for the API. While simple functions offer the best
chances for reuse, composing complex queries remains
challenging for users, because it requires higher programming
skills than access to simple functions, and frameworks for
composing web services are not available for most APIs.

The objective of this work is to enable an end-user to create
complex queries to drug information sources through
functional composition. In practice, we propose to allow users
to specify and execute a sequence of web service functions. In
our typical scenario, users select functions from two different
web services to drug information sources – RxNorm API and
NDF-RT API, and specify a “workflow” of operations to
execute in sequence. An ontology, which specifies web service
function interoperability, facilitates the workflow creation
process in our application.

For example, suppose an application needed to find all the
brand name products available for a given generic drug, whose
identity is known by the FDA unique ingredient identifier code
(UNII_CODE). To do this using the RxNorm API4, the
following steps would be performed (SOAP API functions
listed in parenthesis).

Stud Health Technol Inform (Proc Medinfo) 2013:(in press).

http://mor.nlm.nih.gov/RxMix/

1. Translate the UNII_CODE into an RxNorm identifier
(findRxcuiById).

2. Find the related branded drugs
(getRelatedByType).

The result returned in the first step is an RxNorm concept
identifier (RxCUI) which is used in the second step as a
calling argument to the API function getRelatedByType.
This function returns related RxNorm concepts from the
RxCUI. By enabling functional composition, we make this
example workflow readily available to end-users.

Background

Web service composition

We considered a number of existing web service annotation
and composition frameworks to help define the function
composition model which was introduced above.

• Semantic Annotations for WSDL and XML Schema
(SAWSDL) is a technical recommendation published
by the World Wide Web Consortium (W3C) in 2007
in the context of Semantic Web Framework [12].
The specification enables semantic annotations for
Web services using and building on the existing
extensibility framework of WSDL. However,
SAWSDL has not gained wide use, nor does it
provide a means for composition.

• SSWAP (Simple Semantic Web Architecture and
Protocol) aims to combine web services and semantic
web technologies to enable high-throughput
discovery, assessment, and integration of data and
services between distributed parties [13]. Semantic
Web ontologies encoded in OWL are used to
describe information about a web service such as the
service category, types of input the service consumes,
and the types of output the service produces.
Retrofitting our web services to meet SSWAP
compliance was not considered feasible. So far,
SSWAP has only been adopted by a small number of
bioinformatics resources.

• The Semantic Automated Discovery and Integration
(SADI) is a set of standards-compliant best practices
that simplify interoperability between semantic web
services [14]. Using Semantic Web technologies,
SADI services consume and produce OWL classes.
While SADI is directly compatible with web services
standards, it is best suited to the development of new
web services, for which it provides guidelines.
Retrofitting our web services to meet SADI
compliance was not an option in our case.

• Finally, the workflow application Taverna [15] does
not provide any type of semantic validation.

We chose to develop an OWL ontology that describes the web
services we have developed for the RxNorm and NDF-RT
drug information sources. As with SSWAP and SADI, this
ontology describes the semantics of the input and output of
each function. Unlike other frameworks, however, this
ontology is only used as background knowledge for our web
services composition application, not in the payload of our
web services, which remains unchanged.

Drug information sources

RxNorm is a standardized nomenclature for medications
produced and maintained by the U.S. National Library of
Medicine (NLM) in cooperation with proprietary vendors
[16]. RxNorm concepts are linked by NLM to multiple drug
identifiers for each of the commercially available drug
databases within the UMLS® Metathesaurus®. In addition to
integrating names from existing drug vocabularies, RxNorm
creates standard names for clinical drugs. The RxNorm API
provides functionality to access the RxNorm data set,
including mapping from identifiers of other drug vocabularies
and identification of clinical and branded drug concepts
through a set of named relationships [10]. The SOAP version
of the API contains 28 functions with equivalent functionality
in a RESTful API implementation.

National Drug File Reference Terminology (NDF-RT) is a
concept oriented terminology whose concepts are organized
into taxonomies [17]. In NDF-RT™, generic ingredients or
combinations thereof are described in terms of their active
ingredients, mechanisms of action, physiologic effects, and
therapeutics (indications and contraindications). Orderable
(clinical) drug products inherit the descriptions of their generic
ingredients, and are further described by local (VHA) drug
classification, strength, units, and dose forms. The NDF-RT
API contains functionality to access the hierarchy of data
associated with ingredients and clinical drugs [10].

Methods

Principles for web service composition. Our primary focus
in developing a web service composition model is to
accurately determine the interoperability between functions.
For two functions to be interoperable, one function must
produce as output an element or structure which semantically
matches the input needed by another function. By semantically
representing the function inputs and outputs, and then applying
a set of matching rules to the representations, the
interoperability between functions can be discovered.

Modeling web services functions in the ontology. To model
the web services functions, we developed an ontology using
Protégé. The main focus of the ontology is the description of
functions in a web service. The following tables describe the
components (Table 1) and properties (Table 2) of the
ontology.

Table 1. List of components in the interoperability ontology.

Components/classes Description

service group of functions, may have a set of
sources and specific IDs. Example:
RxNorm API

function a specific function of a service, has
input and output parameters. Example:
findRxcuiById

parameter semantically described characteristics
of input and output of a function.
Example: RxCUI

source certain vocabularies a service may
have. Example: RxNorm

workflow_element a container to describe a unit in a
workflow, each containing a function
and set of data annotations

Table 2. List of properties in the interoperability ontology.

Properties Description

has_function relates a service to a function

has_id relates a source to an ID

has_initial_output relates the first workflow element (the
user input) to the annotation of the input

has_input relates a function to expected inputs or
relates a workflow element to actual data
inputs

has_member relates a user_defined parameter to other
parameters

has_output relates a function to an output parameter

has_source relates a service to a source

interoperable_with relates a function to another function

next_element points a workflow element to the next
workflow element

previous_element points a workflow element to the
previous workflow element

provided_by relates a function to a service

provides relates a service to a function

Modeling web services composition through rules. To
supplement the ontology, we developed a set of rules to
determine the semantic interoperability of the functions for
web service composition as presented earlier. The rules are
listed in Table 3. Note: interoperability is one-directional.

Table 3. List of rules defining interoperability among func-
tions.

Rules – Given: a function A might be interoperable with
function B, potentially across APIs (services)

 If the input of B matches the output of A, then A is potentially
interoperable with B

 If A has an output composed of members (a non-primitive
output), then A also has as output those members (transitively)
 If the output of A is a general ID, the input of B is specific ID,
and the set of potential IDs for A (inferred through the sources
of A’s service) contain the specific ID of B, then A is potential-
ly interoperable with B
If the output of A is a specific ID and the input to B is a
general ID, and the potential IDs for B (inferred through the
sources of A’s service) contain the specific ID of A, then A is
potentially interoperable with B

Instantiating the model and inferring interoperability
relations. Web services are modeled semantically utilizing the
framework provided above. In the ontology, the model is
described using classes. The specific function parameters are
instances of the classes. The properties provide the
relationships between classes and are represented as triples. In
our model for example:

“RxNorm API” “has_function” “findRxcuiByID”

“findRxcuiById” “has_input” “id_type”

“findRxcuiById” “has_input” “id”

“findRxcuiById” “has_output” “RxCUI”

“RxNorm API” “has_function” “getRelatedByType”

“getRelatedByType” “has_input” “RxCUI”

The above example provides a representation of the fact that
the RxNorm API contains the functions findRxcuiById
and getRelatedByType, and describes the inputs and
outputs of findRxcuiById and an input of
getRelatedByType.

Once all the functions and the properties are specified in the
ontology, then the rules are applied to generate a set of
inferred relations (triples). The inferred relations include the
identification of the interoperability between two functions. In
our example above, the following triple is generated:

“findRxcuiById” “interoperable_with” “getRelatedByType”

The triples of the ontology are stored in a Virtuoso [19]
database, and a set of API functions were developed to access
this data, including one function to extract all the
interoperability relations.

Use Cases

Our web service composition model supports a number of
common use cases. Most use cases involve the use of more
than one API but complex queries within one API are also
possible. Several use cases suggested by our users are listed
below. Up until now, implementation of the use cases
required ad hoc programming for web service composition,
and was a hindrance to the use of complex queries.

Finding clinical drugs which may cause allergic reactions.
In this use case, a user is interested in finding all the clinical
drugs known in RxNorm which contain an ingredient class
(example: penicillins) which a patient might be allergic to. A
workflow can be constructed from the API functions in NDF-
RT and RxNorm APIs.

1. findConceptsByName from NDF-RT API to
identify the ingredient class

2. findChildConcepts from NDF-RT API to iden-
tify all the children of the ingredient class

3. getRelatedConceptsByReverseRole from
NDF-RT API, specifying “has_ingredient” as the role
to identify the drug level concepts

4. findRxcuiById from RxNorm API to identify the
RxNorm concept for the ingredient

5. getRelatedByType from RxNorm API, specify-
ing “SCD” as the term type, to identify the clinical
drugs associated with the ingredient.

Example: Find the clinical drugs containing hydantoins (the
allergic condition). The output of this workflow is a list of 49
clinical drugs from RxNorm, including drugs containing allan-
toin, dantrolene, ethotoin, fosphenytoin, mephenytoin, and
phenytoin (for example “Phenytoin 30 MG Oral Capsule”) .

Finding interactions to clinical drugs. A user wishes to up-
date the list of drug interactions to clinical drugs specified by
RxCUIs. Since the list of clinical drugs is old, a check needs
to be made to see if these drugs are still active or have been
remapped into new concepts in RxNorm. The workflow of
functions would use both the RxNorm and NDF-RT APIs.

1. getRxcuiStatus from RxNorm API to determine
if the concept is still active or has been remapped

2. getRelatedByType from RxNorm API to get the
ingredients in the clinical drug

3. findConceptsById from NDF-RT API to get
the NDF-RT identifiers for the ingredients

4. findDrugInteractions from NDF-RT API to
get the ingredients that interact with the clinical drug
ingredients.

Example: Find the interactions to a sulfamethoxazole 800mg –
trimethoprim 160 mg oral tablet (RxCUI = 198335). The out-
put from the workflow is a list of interactions containing 14
drugs for sulfamethoxazole (for example Dicumarol), and 11
drugs for trimethoprim (for example Warfarin).

Finding ingredients from clinical drugs. One user needs to
determine the NDF-RT ingredient identifier starting from a
clinical drug identified by an RxCUI. The following
operations are performed:

1. A call to the RxNorm API function getRelat-
edByType to get the corresponding ingredient con-
cept(s) related to the clinical drug

2. A call to the NDF-RT API function findCon-
ceptsById to map the RxNorm ingredient con-
cepts to NDF-RT concepts.

3. A call to the NDF-RT API function getCon-
ceptProperties to find those concepts that were
designated as ingredients.

Example: Find the NDF-RT ingredients starting with RxCUI =
860232. The output of this workflow is the ingredient con-
cepts in NDF-RT for Guaifenesin, Phenylephrine and Hydro-
codone.

Finding VA classes for clinical dose forms. Another use case
is finding the VA classes for clinical dose forms. For exam-
ple: What is the VA class for clofazimine oral tablets
(RxCUI=371567)? A workflow can be constructed using a
web service composition application to answer this question.

1. getRelatedByType from RxNorm API, specify-
ing “SCD” as the term type.

2. findConceptsById from NDF-RT API, specify-
ing “RXCUI” as the Id type.

3. getVaClassOfConcept from NDF-RT API.

Example: Find the VA class for clofazimine oral tablets
(RxCUI = 371567). The output of this workflow is the VA
class “Anti-Infectives, Other”.

Finding brand names from clinical drug strings. Med-
linePlus Connect [18] uses the RxNorm API to find brand
names associated with clinical drug name strings. A simple
workflow can be constructed to accomplish this.

1. findRxcuiByName from RxNorm API, specify-
ing normalized string search

2. getAllRelated from RxNorm API, to get the re-
lated brand information.

Example: Find the brand information for the name “citalopram
20 mg tablet”. The output of this workflow will return the
brand information for Celexa.

Discussion

Significance

This work is not merely an incremental improvement over the
RxNorm and NDF-RT APIs we have developed in the past
years. From a clinical perspective, it is driven by common use
cases for which complex queries involving multiple API func-
tion calls are required. In our experience, it is difficult for
most users to generate such queries. By guiding users in the
composition process, the web service composition model facil-
itates creating such queries. From a technical perspective, the
fact that the interoperability ontology resides outside the soft-
ware of the web services itself allows for easy maintenance of
both the software and the ontology.

Maintenance

The web service composition model is easily expanded to add
a new function of a web service. This is done by adding the
description of the function (primarily the inputs and outputs)
and executing the rule set to generate the interoperability with
the other functions.

For example, to add the NDF-RT API function
getVAClassMembers, the following steps are performed.

1. The instance of the function class is defined with the
value “getVAClassMembers”.

2. The input for the function is defined: the property
“has_input” has a value of “NUI”

3. The output is defined: the property “has_output”
would have a value of “minimal_concept”. Note that
“minimal_concept” has been previously defined and
“has_members” of “term_type”, “RxCui” and
“Name”.

4. The rules are applied and new operability pairings are
generated. In this case, any function which produces a
NUI as output would be interoperable with
getVAClassMembers. For example,
“getChildConcepts” is “interoperable_with”
“getVAClassMembers”. Similarly, since
getVAClassMembers produces RxCui and a concept
name as output, so any function that receives either of
those as input will be potentially interoperable. For
example, “getVAClassMembers” is
“interoperable_with” “findDrugInteractions”.

Limitations

The web service composition model is not compliant with
broader frameworks like SADI. Because the APIs were well
established with a large client base, we made a conscious
decision not to change them to conform with those
frameworks. In future work we are planning to investigate how
our framework could be made compatible with SADI.

The model produces possible interoperable function pairs, but
these may not be practical pairings. The application using the
interoperable data may need to eliminate some of these pair-
ings for many different reasons.

Application

We have developed and recently released RxMix
(http://mor.nlm.nih.gov/RxMix/), a web service composition
application for enabling complex queries to the RxNorm,
RxTerms and NDF-RT APIs. This application allows biomed-

ical researchers and health professionals to interactively create
complex workflows (i.e., sequences of interoperable API func-
tions) through a graphical user interface, i.e., without having to
write programs. Workflow creation and validation is effective-
ly supported by the web service composition model (and on-
tology) we have developed. Once created, these workflows can
be executed on lists of entities (e.g., find brand names for a list
of NDC codes). Figure 1 shows the workflow for the “allergy”
use cases.

Figure 1. Example of web service composition workflow in the

RxMix application.

Conclusions

We proposed a web service composition model for the
RxNorm and NDF-RT APIs. This model enables an end-user
to create complex queries to drug information sources through
functional composition, by creating sequences of functions
from application program interfaces (API) to these drug
terminologies. We illustrate that the functional composition
model supports common use cases, including checking
interactions for RxNorm drugs and deploying allergy lists
defined in reference to drug properties in NDF-RT.

Acknowledgments

This research was supported in part by the Intramural Re-
search Program of the National Institutes of Health, National
Library of Medicine (NLM).

References

[1] Bodenreider O. Biomedical ontologies in action: role in
knowledge management, data integration and decision support.
Yearb Med Inform 2008:67-79

[2] Cimino JJ, Zhu X. The practical impact of ontologies on
biomedical informatics. Yearb Med Inform 2006:124-35

[3] Blumenthal D, Tavenner M. The "meaningful use" regulation
for electronic health records. N Engl J Med 2010;363(6):501-4

[4] Health and Human Services Department. Health Information
Technology: Standards, Implementation Specifications, and
Certification Criteria for Electronic Health Record Technology,
2014 Edition; Revisions to the Permanent Certification Program
for Health Information Technology: A Proposed Rule by the
Health and Human Services Department on 03/07/2012. Federal
Register 2012:13832-13885 https://federalregister.gov/a/2012-
4430.

[5] Rogers J, Bodenreider O. SNOMED CT: Browsing the
browsers. Proceedings of the Third International Conference on
Knowledge Representation in Medicine (KR-MED 2008)
2008:30-36 (electronic proceedings: http://ceur-ws.org/Vol-
410/)

[6] Bodenreider O. The Unified Medical Language System
(UMLS): Integrating biomedical terminology. Nucleic Acids Res
2004;32 Database issue:D267-70

[7] Whetzel PL, Noy NF, Shah NH, Alexander PR, Nyulas C,
Tudorache T, et al. BioPortal: enhanced functionality via new
Web services from the National Center for Biomedical Ontology
to access and use ontologies in software applications. Nucleic
Acids Res 2011;39(Web Server issue):W541-5

[8] National Library of Medicine. UMLS Terminology Services.
https://uts.nlm.nih.gov/.

[9] National Center for Biomedical Ontology. BioPortal.
http://bioportal.bioontology.org/.

[10] National Library of Medicine. RxNav.
http://rxnav.nlm.nih.gov/.

[11] Object Management Group. CTS2. 2011
http://www.omg.org/spec/CTS2/1.0/Beta1/.

[12] World Wide Web Consortium. Semantic Annotations for WSDL
and XML Schema. http://www.w3.org/TR/sawsdl/.

[13] University of Arizona. Simple Semantic Web Architecture and
Protocol. http://sswap.info/.

[14] Wilkinson MD, Vandervalk B, McCarthy L. The Semantic
Automated Discovery and Integration (SADI) Web service
Design-Pattern, API and Reference Implementation. J Biomed
Semantics 2011;2(1):8

[15] Hull D, Wolstencroft K, Stevens R, Goble C, Pocock MR, Li P,
et al. Taverna: a tool for building and running workflows of
services. Nucleic Acids Res 2006;34(Web Server issue):W729-
32

[16] Nelson SJ, Zeng K, Kilbourne J, Powell T, Moore R.
Normalized names for clinical drugs: RxNorm at 6 years. J Am
Med Inform Assoc 2011;18(4):441-8

[17] Veterans Health Administration. NDF-RT. In; 2010
http://evs.nci.nih.gov/ftp1/NDF-RT/NDF-
RT%20Documentation.pdf.

[18] National Library of Medicine. MedlinePlusConnect.
http://www.nlm.nih.gov/medlineplus/connect/overview.html.

[19] Virtuoso. http://docs.openlinksw.com/virtuoso/

Address for correspondence

Olivier Bodenreider -- obodenreider@mail.nih.gov

http://ceur-ws.org/Vol-410/
http://ceur-ws.org/Vol-410/
http://bioportal.bioontology.org/
http://rxnav.nlm.nih.gov/
http://www.omg.org/spec/CTS2/1.0/Beta1/
http://www.w3.org/TR/sawsdl/
http://sswap.info/
http://evs.nci.nih.gov/ftp1/NDF-RT/NDF-RT%20Documentation.pdf
http://evs.nci.nih.gov/ftp1/NDF-RT/NDF-RT%20Documentation.pdf
http://www.nlm.nih.gov/medlineplus/connect/overview.html
mailto:obodenreider@mail.nih.gov

	Abstract
	Keywords:

	Introduction
	Background
	Web service composition
	Drug information sources

	Methods
	Use Cases
	Discussion
	Significance
	Maintenance
	Limitations
	Application

	Conclusions
	Acknowledgments
	References
	Address for correspondence

